Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Petiole gall aphid (Pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.

Identifieur interne : 000791 ( Main/Exploration ); précédent : 000790; suivant : 000792

Petiole gall aphid (Pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.

Auteurs : Jiayan Ye [Estonie] ; Yifan Jiang [Estonie] ; Linda-Liisa Veromann-Jürgenson [Estonie] ; Ülo Niinemets [Estonie]

Source :

RBID : pubmed:31700201

Abstract

Poplar spiral gall aphid (Pemphigus spyrothecae) forms galls on the petiole in poplars (Populus) and mass infestations are frequent in poplar stands, but how these parasite gall infestations can affect the leaf lamina structure, photosynthetic rate and constitutive and stress volatile emissions is unknown. We investigated how the infestation by the petiole gall aphids affects lamina photosynthetic characteristics (net assimilation rate, stomatal conductance), C and N contents, and constitutive isoprene and induced volatile emissions in Populus × petrovskiana. The dry gall mass per leaf dry mass (Mg/Ml) was used as a quantitative measure of the severity of gall infestation. Very high fraction of leaf biomass was invested in gall formation with Mg/Ml varying between 0.5-2. Over the whole range of the infestation severities, net assimilation rate per area, leaf dry mass per unit area and N content decreased with increasing the severity of infestation. In contrast, stomatal conductance, leaf dry mass per fresh mass, constitutive isoprene emissions, and induced green leaf volatile (GLV), monoterpene, sesquiterpene and benzenoid emissions increased with increasing the severity of gall infestation. The rates of induced emissions were low and these emissions were associated with methyl jasmonate release from leaf laminas. The data demonstrate that petiole gall infestations lead to major changes in leaf lamina sink-source relationships and leaf water relations, thereby significantly altering lamina photosynthesis. Modifications in stress-induced emissions likely indicated systemic signaling triggered by jasmonate transported from the petiole galls to the lamina where jasmonate elicited a cascade of volatile emission responses. Enhance isoprene emissions and induced volatile emissions can play a major role in indirect defense against other herbivores, securing the food source for the gall aphids. In conclusion, a massive infestation by petiole gall aphids can profoundly modify the foliage photosynthetic performance and volatile emission profiles in poplars.

DOI: 10.1007/s00468-018-1756-2
PubMed: 31700201
PubMed Central: PMC6837882


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Petiole gall aphid (
<i>Pemphigus spyrothecae</i>
) infestation of
<i>Populus</i>
×
<i>petrovskiana</i>
leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.</title>
<author>
<name sortKey="Ye, Jiayan" sort="Ye, Jiayan" uniqKey="Ye J" first="Jiayan" last="Ye">Jiayan Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veromann Jurgenson, Linda Liisa" sort="Veromann Jurgenson, Linda Liisa" uniqKey="Veromann Jurgenson L" first="Linda-Liisa" last="Veromann-Jürgenson">Linda-Liisa Veromann-Jürgenson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31700201</idno>
<idno type="pmid">31700201</idno>
<idno type="doi">10.1007/s00468-018-1756-2</idno>
<idno type="pmc">PMC6837882</idno>
<idno type="wicri:Area/Main/Corpus">000631</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000631</idno>
<idno type="wicri:Area/Main/Curation">000631</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000631</idno>
<idno type="wicri:Area/Main/Exploration">000631</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Petiole gall aphid (
<i>Pemphigus spyrothecae</i>
) infestation of
<i>Populus</i>
×
<i>petrovskiana</i>
leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.</title>
<author>
<name sortKey="Ye, Jiayan" sort="Ye, Jiayan" uniqKey="Ye J" first="Jiayan" last="Ye">Jiayan Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veromann Jurgenson, Linda Liisa" sort="Veromann Jurgenson, Linda Liisa" uniqKey="Veromann Jurgenson L" first="Linda-Liisa" last="Veromann-Jürgenson">Linda-Liisa Veromann-Jürgenson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Trees (Berlin, Germany : West)</title>
<idno type="ISSN">0931-1890</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplar spiral gall aphid (
<i>Pemphigus spyrothecae</i>
) forms galls on the petiole in poplars (
<i>Populus</i>
) and mass infestations are frequent in poplar stands, but how these parasite gall infestations can affect the leaf lamina structure, photosynthetic rate and constitutive and stress volatile emissions is unknown. We investigated how the infestation by the petiole gall aphids affects lamina photosynthetic characteristics (net assimilation rate, stomatal conductance), C and N contents, and constitutive isoprene and induced volatile emissions in
<i>Populus</i>
×
<i>petrovskiana</i>
. The dry gall mass per leaf dry mass (
<i>M</i>
<sub>g</sub>
/
<i>M</i>
<sub>l</sub>
) was used as a quantitative measure of the severity of gall infestation. Very high fraction of leaf biomass was invested in gall formation with
<i>M</i>
<sub>g</sub>
/
<i>M</i>
<sub>l</sub>
varying between 0.5-2. Over the whole range of the infestation severities, net assimilation rate per area, leaf dry mass per unit area and N content decreased with increasing the severity of infestation. In contrast, stomatal conductance, leaf dry mass per fresh mass, constitutive isoprene emissions, and induced green leaf volatile (GLV), monoterpene, sesquiterpene and benzenoid emissions increased with increasing the severity of gall infestation. The rates of induced emissions were low and these emissions were associated with methyl jasmonate release from leaf laminas. The data demonstrate that petiole gall infestations lead to major changes in leaf lamina sink-source relationships and leaf water relations, thereby significantly altering lamina photosynthesis. Modifications in stress-induced emissions likely indicated systemic signaling triggered by jasmonate transported from the petiole galls to the lamina where jasmonate elicited a cascade of volatile emission responses. Enhance isoprene emissions and induced volatile emissions can play a major role in indirect defense against other herbivores, securing the food source for the gall aphids. In conclusion, a massive infestation by petiole gall aphids can profoundly modify the foliage photosynthetic performance and volatile emission profiles in poplars.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31700201</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0931-1890</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>33</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Trees (Berlin, Germany : West)</Title>
<ISOAbbreviation>Trees (Berl West)</ISOAbbreviation>
</Journal>
<ArticleTitle>Petiole gall aphid (
<i>Pemphigus spyrothecae</i>
) infestation of
<i>Populus</i>
×
<i>petrovskiana</i>
leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.</ArticleTitle>
<Pagination>
<MedlinePgn>37-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00468-018-1756-2</ELocationID>
<Abstract>
<AbstractText>Poplar spiral gall aphid (
<i>Pemphigus spyrothecae</i>
) forms galls on the petiole in poplars (
<i>Populus</i>
) and mass infestations are frequent in poplar stands, but how these parasite gall infestations can affect the leaf lamina structure, photosynthetic rate and constitutive and stress volatile emissions is unknown. We investigated how the infestation by the petiole gall aphids affects lamina photosynthetic characteristics (net assimilation rate, stomatal conductance), C and N contents, and constitutive isoprene and induced volatile emissions in
<i>Populus</i>
×
<i>petrovskiana</i>
. The dry gall mass per leaf dry mass (
<i>M</i>
<sub>g</sub>
/
<i>M</i>
<sub>l</sub>
) was used as a quantitative measure of the severity of gall infestation. Very high fraction of leaf biomass was invested in gall formation with
<i>M</i>
<sub>g</sub>
/
<i>M</i>
<sub>l</sub>
varying between 0.5-2. Over the whole range of the infestation severities, net assimilation rate per area, leaf dry mass per unit area and N content decreased with increasing the severity of infestation. In contrast, stomatal conductance, leaf dry mass per fresh mass, constitutive isoprene emissions, and induced green leaf volatile (GLV), monoterpene, sesquiterpene and benzenoid emissions increased with increasing the severity of gall infestation. The rates of induced emissions were low and these emissions were associated with methyl jasmonate release from leaf laminas. The data demonstrate that petiole gall infestations lead to major changes in leaf lamina sink-source relationships and leaf water relations, thereby significantly altering lamina photosynthesis. Modifications in stress-induced emissions likely indicated systemic signaling triggered by jasmonate transported from the petiole galls to the lamina where jasmonate elicited a cascade of volatile emission responses. Enhance isoprene emissions and induced volatile emissions can play a major role in indirect defense against other herbivores, securing the food source for the gall aphids. In conclusion, a massive infestation by petiole gall aphids can profoundly modify the foliage photosynthetic performance and volatile emission profiles in poplars.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Jiayan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Yifan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veromann-Jürgenson</LastName>
<ForeName>Linda-Liisa</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Trees (Berl West)</MedlineTA>
<NlmUniqueID>100955504</NlmUniqueID>
<ISSNLinking>0931-1890</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biotic-stressed volatile</Keyword>
<Keyword MajorTopicYN="N">methyl jasmonate</Keyword>
<Keyword MajorTopicYN="N">petiole gall aphids</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">quantitative responses</Keyword>
</KeywordList>
<CoiStatement>Conflict of interest The authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31700201</ArticleId>
<ArticleId IdType="doi">10.1007/s00468-018-1756-2</ArticleId>
<ArticleId IdType="pmc">PMC6837882</ArticleId>
<ArticleId IdType="mid">EMS84705</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):512-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(3):657-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(2):201-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23564954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Nov 28;14:304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Dec;41(12):1105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 23;4:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 19;8(11):e79994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jun;232(1):235-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Nov;167(3):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21667296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 03;6:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25784918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Sep;88(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atmos Meas Tech. 2010 Mar 25;3(2):387-395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1447-1463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28295374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 May;21(7):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2017 Jan;254(1):203-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26739691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2012 Mar;125(2):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21584787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Dec;29(12):2238-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1582-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Nov 28;376(4):723-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2015 Jan;72:43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25437243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1153:161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Mar;216(5):745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Feb;43(2):143-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Exp Bot. 2017 Jun;138:184-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29367792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Feb;53(367):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jul;19(7):409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12850447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Ecol. 2018 Sep;219(9):1021-1028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2004;49:175-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Nov;167(3):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21618011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Apr;43(4):327-338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28280959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2016 Jan;84:70-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26723843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jul;87(7):1781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16922327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):856-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27225874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):195-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2016 Nov 1;50(21):11501-11510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27704791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jul 20;68(16):4679-4694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 29;410(6828):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Jul;40(7):742-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25027764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):541-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Mar;22(4):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11874723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Sep;193-194:70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22794920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24067657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Dec;34(12):1399-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Nov;220(3):666-683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28665020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1576-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26508678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 11;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25303804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Jan;41(1):160-175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28776716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="Ye, Jiayan" sort="Ye, Jiayan" uniqKey="Ye J" first="Jiayan" last="Ye">Jiayan Ye</name>
</noRegion>
<name sortKey="Jiang, Yifan" sort="Jiang, Yifan" uniqKey="Jiang Y" first="Yifan" last="Jiang">Yifan Jiang</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Veromann Jurgenson, Linda Liisa" sort="Veromann Jurgenson, Linda Liisa" uniqKey="Veromann Jurgenson L" first="Linda-Liisa" last="Veromann-Jürgenson">Linda-Liisa Veromann-Jürgenson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000791 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000791 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31700201
   |texte=   Petiole gall aphid (Pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31700201" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020